کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
599472 | 1454281 | 2014 | 7 صفحه PDF | دانلود رایگان |

The current trend in the development of biomaterials is towards bioactive and biodegradable systems. In particular, enzyme-responsive structures are useful tools to realize biodegradable surfaces for the controlled delivery of biomolecules/drugs through a triggered surface erosion process. Up to now, enzyme-responsive structures have been designed by covalent linkage between synthetic polymers and biodegradable functionalities that are responsive to chemical and biological cues (i.e. proteases or pH) [1], [2], [3] and [4].Here, we present a novel approach to achieve enzyme-responsive surface-attached networks by exploiting the non-covalent interaction between streptavidin and biotin. The functional component of this three-dimensional (3D) structure is a layer of biotinylated peptides that are degraded by the action of specific proteases.The system was stable under typical physiological conditions; however, it was efficiently degraded upon enzyme exposure. Further, the controlled release of biomolecules and drugs – previously entrapped into the surface-attached network – was demonstrated to occur as a consequence of the enzymatic cleavage.This versatile approach does not require complex chemical procedures. Interestingly, it can be easily adapted to different enzyme-peptide partners and therefore is very attractive for tissue replacement, drug delivery and biosensing.
Figure optionsDownload as PowerPoint slide
Journal: Colloids and Surfaces B: Biointerfaces - Volume 123, 1 November 2014, Pages 89–95