کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
600630 1454312 2012 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The effect of VEGF-immobilized nickel-free high-nitrogen stainless steel on viability and proliferation of vascular endothelial cells
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
The effect of VEGF-immobilized nickel-free high-nitrogen stainless steel on viability and proliferation of vascular endothelial cells
چکیده انگلیسی

Using ester bonds, vascular endothelial growth factor-A (VEGF-A) was immobilized on the surface of a novel biometal, nickel-free high-nitrogen stainless steel (HNS). The biological activity of immobilized VEGF-A was investigated after the culture of human umbilical vein endothelial cells (HUVECs) on the substrate. Immobilization of VEGF-A onto the HNS surface was performed using trisuccinimidyl citrate (TSC) as a linker. Firstly, UV irradiation was employed to amplify hydroxyl groups on the HNS surface. Next, the HNS was dipped into TSC/dimethyl sulfoxide solution at room temperature. From the results of water contact angle measurement and X-ray photoelectron spectroscopy (XPS) analysis, TSC was found to be immobilized on the HNS surface via ester bonds. Quantitative analysis demonstrated that immobilized VEGF-A remained even after immersion in culture medium for 7 days; however, it was gradually deimmobilized by hydrolysis of the ester bonds at the TSC–metal interface. As a result, VEGF-A-immobilized HNS significantly contributed to the stimulation of HUVEC growth for the initial stage of culture, even though the gradual reduction in growth stimulation of HUVECs occurred by the sequential deimmobilization of VEGF-A, which was caused by the hydrolysis of the ester groups. Therefore, VEGF-A-immobilized HNS could be applied as a basic material for coronary stents.

Figure optionsDownload as PowerPoint slideHighlights
► VEGF-A was immobilized on the surface of nickel-free high-nitrogen stainless steel through trisuccinimidyl citrate.
► Nickel-free high-nitrogen stainless steel showed biocompatibility compared with commercial biometal, SUS316L.
► VEGF-A-immobilized HNS significantly contributed to the stimulation of endothelial cells growth for the initial stage of culture.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Colloids and Surfaces B: Biointerfaces - Volume 92, 1 April 2012, Pages 1–8
نویسندگان
, , , ,