کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
602075 | 879962 | 2009 | 7 صفحه PDF | دانلود رایگان |

Electrokinetic and electrostatic properties of human brain-microvascular endothelial cells (HBMECs) with the uptake of l-arginine (Arg)-modified solid lipid nanoparticles (RSLNs) were investigated. The exposure of these HBMECs to radiofrequency electromagnetic field (EMF) was also considered. As compared with the original culture of HBMECs, the uptake of the biomimetic RSLNs induced smaller absolute values of electrophoretic mobility, zeta potential, Donnan potential, and fixed charge density. In addition, an increase in the coverage fraction of Arg on the external layers of the RSLNs reduced the electrical characteristics of HBMECs. An increase in the power of EMF also decreased the charge of RSLNs-incorporating HBMECs. On the contrary, softness of HBMECs was enhanced by an increased coverage fraction of Arg and an increased power of EMF. Electrophysiology of HBMECs can be efficiently mediated by the novel RSLNs and exposure to EMF through fluctuation and redistribution of the membrane charge.
Journal: Colloids and Surfaces B: Biointerfaces - Volume 72, Issue 2, 1 September 2009, Pages 201–207