کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6023147 1580867 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A depression network of functionally connected regions discovered via multi-attribute canonical correlation graphs
ترجمه فارسی عنوان
یک شبکه افسانه ای از مناطق متصل به عملکرد کشف شده توسط نمودار همبستگی کانونی چند ویژگی
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
چکیده انگلیسی
To establish brain network properties associated with major depressive disorder (MDD) using resting-state functional magnetic resonance imaging (Rs-fMRI) data, we develop a multi-attribute graph model to construct a region-level functional connectivity network that uses all voxel level information. For each region pair, we define the strength of the connectivity as the kernel canonical correlation coefficient between voxels in the two regions; and we develop a permutation test to assess the statistical significance. We also construct a network based classifier for making predictions on the risk of MDD. We apply our method to Rs-fMRI data from 20 MDD patients and 20 healthy control subjects in the Predictors of Remission in Depression to Individual and Combined Treatments (PReDICT) study. Using this method, MDD patients can be distinguished from healthy control subjects based on significant differences in the strength of regional connectivity. We also demonstrate the performance of the proposed method using simulationstudies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 141, 1 November 2016, Pages 431-441
نویسندگان
, , , ,