کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6023629 1580872 2016 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Group-wise parcellation of the cortex through multi-scale spectral clustering
ترجمه فارسی عنوان
جداسازی گروه قشر از طریق خوشه بندی طیفی چند بعدی
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
چکیده انگلیسی


- Group-wise connectivity-driven whole cortex parcellation method
- Spectral clustering formulation for capturing multi-scale information
- Simultaneous estimation of group coherent single subject parcellations
- Introduction of quantitative measures for evaluation of parcellation schemes
- Promising results in terms of parcel quality, modality comparisons, group consistency and inter-group similarities

The delineation of functionally and structurally distinct regions as well as their connectivity can provide key knowledge towards understanding the brain's behaviour and function. Cytoarchitecture has long been the gold standard for such parcellation tasks, but has poor scalability and cannot be mapped in vivo. Functional and diffusion magnetic resonance imaging allow in vivo mapping of brain's connectivity and the parcellation of the brain based on local connectivity information. Several methods have been developed for single subject connectivity driven parcellation, but very few have tackled the task of group-wise parcellation, which is essential for uncovering group specific behaviours. In this paper, we propose a group-wise connectivity-driven parcellation method based on spectral clustering that captures local connectivity information at multiple scales and directly enforces correspondences between subjects. The method is applied to diffusion Magnetic Resonance Imaging driven parcellation on two independent groups of 50 subjects from the Human Connectome Project. Promising quantitative and qualitative results in terms of information loss, modality comparisons, group consistency and inter-group similarities demonstrate the potential of the method.

344

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 136, 1 August 2016, Pages 68-83
نویسندگان
, , , , ,