کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
602369 | 1454317 | 2009 | 6 صفحه PDF | دانلود رایگان |

A diacetylene derivative, 10,12-pentacosadiynoic acid (PDA), was conjugated to a small peptide chain Cysteine–Cysteine–Glycine (CCG) through the solid-phase peptide synthesis. The (CdSe)ZnS core–shell quantum dots (QDs) capped with trioctylphosphine ligands were modified through a surface ligand reaction to prepare the PDA-CCG QDs conjugate. Both systems, PDA-CCG and PDA-CCG QDs, were investigated as Langmuir monolayer at the air–water interface through the surface pressure-area (π-A) isotherms, compression–decompression cycles, stability measurements, and in situ UV–vis and fluorescence spectroscopy. Two different π-A isotherms were observed for the systems investigated showing the importance of the peptide moiety in PDA-CCG to form a Langmuir monolayer up to a surface pressure of 50 mN m−1 compared with 15 mN m−1 for the PDA component alone. The compression–decompression cycles and stability measurements for both systems suggest the formation of a stable Langmuir monolayer over 1 h time period. Although the in situ UV–vis spectroscopy of PDAA-CCG and PDA-CCG QDs does not show an absorption spectrum, we observed by in situ fluorescence spectroscopy the photoluminescence (PL) of the PDA-CCG QDs at 560 nm, with an intensity of the PL increasing linearly with the increase of the surface pressure. Irradiating the PDA-CCG QDs Langmuir monolayer at 254 nm, we observe the photopolymerization with two distinct bands at 575 (blue band) and 630 nm (red band) of the polymer.
Journal: Colloids and Surfaces B: Biointerfaces - Volume 70, Issue 2, 1 May 2009, Pages 163–168