کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6024976 1580895 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Towards brain-activity-controlled information retrieval: Decoding image relevance from MEG signals
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
Towards brain-activity-controlled information retrieval: Decoding image relevance from MEG signals
چکیده انگلیسی
We hypothesize that brain activity can be used to control future information retrieval systems. To this end, we conducted a feasibility study on predicting the relevance of visual objects from brain activity. We analyze both magnetoencephalographic (MEG) and gaze signals from nine subjects who were viewing image collages, a subset of which was relevant to a predetermined task. We report three findings: i) the relevance of an image a subject looks at can be decoded from MEG signals with performance significantly better than chance, ii) fusion of gaze-based and MEG-based classifiers significantly improves the prediction performance compared to using either signal alone, and iii) non-linear classification of the MEG signals using Gaussian process classifiers outperforms linear classification. These findings break new ground for building brain-activity-based interactive image retrieval systems, as well as for systems utilizing feedback both from brain activity and eye movements.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 112, 15 May 2015, Pages 288-298
نویسندگان
, , , , , , , ,