کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6025436 | 1580896 | 2015 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Learning a common dictionary for subject-transfer decoding with resting calibration
ترجمه فارسی عنوان
یادگیری یک فرهنگ لغت مشترک برای رمزگشایی موضوعی با کالیبراسیون استراحت
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب شناختی
چکیده انگلیسی
Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performance of subject-transfer decoding in a brain-machine interface (BMI). To accommodate the variability in brain signals, we propose 1) a method for extracting spatial bases (or a dictionary) shared by multiple subjects, by employing a signal-processing technique of dictionary learning modified to compensate for variations between subjects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state activity of a previously unseen target subject as calibration data for compensating for variations, eliminating the need for a standard calibration based on task sessions. Applying our methodology to a dataset of electroencephalography (EEG) recordings during a selective visual-spatial attention task from multiple subjects and sessions, where the variability compensation was essential for reducing the redundancy of the dictionary, we found that the extracted common brain activities were reasonable in the light of neuroscience knowledge. The applicability to subject-transfer decoding was confirmed by improved performance over existing decoding methods. These results suggest that analyzing multisubject brain activities on common bases by the proposed method enables information sharing across subjects with low-burden resting calibration, and is effective for practical use of BMI in variable environments.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 111, 1 May 2015, Pages 167-178
Journal: NeuroImage - Volume 111, 1 May 2015, Pages 167-178
نویسندگان
Hiroshi Morioka, Atsunori Kanemura, Jun-ichiro Hirayama, Manabu Shikauchi, Takeshi Ogawa, Shigeyuki Ikeda, Motoaki Kawanabe, Shin Ishii,