کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6026108 1188677 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Full Length ArticlesFramework for integrated MRI average of the spinal cord white and gray matter: The MNI-Poly-AMU template
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
Full Length ArticlesFramework for integrated MRI average of the spinal cord white and gray matter: The MNI-Poly-AMU template
چکیده انگلیسی


- First unbiased template of the human spinal cord: MNI-Poly-AMU
- Probabilistic atlas of white and gray matter
- Framework for registering data to the template (T1, T2, DTI, fMRI, MTR, etc.)
- Open source software, actively maintained

The field of spinal cord MRI is lacking a common template, as existing for the brain, which would allow extraction of multi-parametric data (diffusion-weighted, magnetization transfer, etc.) without user bias, thereby facilitating group analysis and multi-center studies. This paper describes a framework to produce an unbiased average anatomical template of the human spinal cord. The template was created by co-registering T2-weighted images (N = 16 healthy volunteers) using a series of pre-processing steps followed by non-linear registration. A white and gray matter probabilistic template was then merged to the average anatomical template, yielding the MNI-Poly-AMU template, which currently covers vertebral levels C1 to T6. New subjects can be registered to the template using a dedicated image processing pipeline. Validation was conducted on 16 additional subjects by comparing an automatic template-based segmentation and manual segmentation, yielding a median Dice coefficient of 0.89. The registration pipeline is rapid (~ 15 min), automatic after one C2/C3 landmark manual identification, and robust, thereby reducing subjective variability and bias associated with manual segmentation. The template can notably be used for measurements of spinal cord cross-sectional area, voxel-based morphometry, identification of anatomical features (e.g., vertebral levels, white and gray matter location) and unbiased extraction of multi-parametric data.

271

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 102, Part 2, 15 November 2014, Pages 817-827
نویسندگان
, , , , , , , , , , , ,