کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6026414 1580905 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Group-PCA for very large fMRI datasets
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
Group-PCA for very large fMRI datasets
چکیده انگلیسی
Increasingly-large datasets (for example, the resting-state fMRI data from the Human Connectome Project) are demanding analyses that are problematic because of the sheer scale of the aggregate data. We present two approaches for applying group-level PCA; both give a close approximation to the output of PCA applied to full concatenation of all individual datasets, while having very low memory requirements regardless of the number of datasets being combined. Across a range of realistic simulations, we find that in most situations, both methods are more accurate than current popular approaches for analysis of multi-subject resting-state fMRI studies. The group-PCA output can be used to feed into a range of further analyses that are then rendered practical, such as the estimation of group-averaged voxelwise connectivity, group-level parcellation, and group-ICA.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 101, 1 November 2014, Pages 738-749
نویسندگان
, , , , ,