کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6026504 1580903 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Accurate automatic estimation of total intracranial volume: A nuisance variable with less nuisance
ترجمه فارسی عنوان
برآورد دقیق اتوماتیک حجم کل داخل جمجمه: یک متغیر مزاحم با مزاحمت کمتر
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
چکیده انگلیسی


- 288 T1 MRI from multiple scanners were manually segmented for intracranial volume.
- We compare SPM12 with the current methods of estimating intracranial volume.
- SPM12 shows a very high correlation with manual measures and little bias.
- Newer automated volume measures are more accurate controls for head size variation.

Total intracranial volume (TIV/ICV) is an important covariate for volumetric analyses of the brain and brain regions, especially in the study of neurodegenerative diseases, where it can provide a proxy of maximum pre-morbid brain volume. The gold-standard method is manual delineation of brain scans, but this requires careful work by trained operators. We evaluated Statistical Parametric Mapping 12 (SPM12) automated segmentation for TIV measurement in place of manual segmentation and also compared it with SPM8 and FreeSurfer 5.3.0. For T1-weighted MRI acquired from 288 participants in a multi-centre clinical trial in Alzheimer's disease we find a high correlation between SPM12 TIV and manual TIV (R2 = 0.940, 95% Confidence Interval (0.924, 0.953)), with a small mean difference (SPM12 40.4 ± 35.4 ml lower than manual, amounting to 2.8% of the overall mean TIV in the study). The correlation with manual measurements (the key aspect when using TIV as a covariate) for SPM12 was significantly higher (p < 0.001) than for either SPM8 (R2 = 0.577 CI (0.500, 0.644)) or FreeSurfer (R2 = 0.801 CI (0.744, 0.843)). These results suggest that SPM12 TIV estimates are an acceptable substitute for labour-intensive manual estimates even in the challenging context of multiple centres and the presence of neurodegenerative pathology. We also briefly discuss some aspects of the statistical modelling approaches to adjust for TIV.

301

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 104, 1 January 2015, Pages 366-372
نویسندگان
, , , , , , , ,