کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6026559 1580901 2015 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
GraSP: Geodesic Graph-based Segmentation with Shape Priors for the functional parcellation of the cortex
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
GraSP: Geodesic Graph-based Segmentation with Shape Priors for the functional parcellation of the cortex
چکیده انگلیسی
In this paper, we propose a novel graph-based parcellation method that relies on a discrete Markov Random Field framework. The spatial connectedness of the parcels is explicitly enforced by shape priors. The shape of the parcels is adapted to underlying data through the use of functional geodesic distances. Our method is initialization-free and rapidly segments the cortex in a single optimization. The performance of the method was assessed using a large developmental cohort of more than 850 subjects. Compared to two prevalent parcellation methods, our approach provides superior reproducibility for a similar data fit. Furthermore, compared to other methods, it avoids incoherent parcels. Finally, the method's utility is demonstrated through its ability to detect strong brain developmental effects that are only weakly observed using other methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 106, 1 February 2015, Pages 207-221
نویسندگان
, , , , , ,