کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6026766 1580906 2014 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Non-parametric Bayesian graph models reveal community structure in resting state fMRI
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
Non-parametric Bayesian graph models reveal community structure in resting state fMRI
چکیده انگلیسی


- Three nonparametric Bayesian models for node clustering are used to model rs-fMRI.
- Models' predictability and reproducibility are extensively evaluated using resampling.
- The community structure model shows better predictability and reproducibility.
- This finding suggests that rs-fMRI graphs exhibit community structure.
- Modeling between-cluster link probabilities adds important information.

Modeling of resting state functional magnetic resonance imaging (rs-fMRI) data using network models is of increasing interest. It is often desirable to group nodes into clusters to interpret the communication patterns between nodes. In this study we consider three different nonparametric Bayesian models for node clustering in complex networks. In particular, we test their ability to predict unseen data and their ability to reproduce clustering across datasets. The three generative models considered are the Infinite Relational Model (IRM), Bayesian Community Detection (BCD), and the Infinite Diagonal Model (IDM). The models define probabilities of generating links within and between clusters and the difference between the models lies in the restrictions they impose upon the between-cluster link probabilities. IRM is the most flexible model with no restrictions on the probabilities of links between clusters. BCD restricts the between-cluster link probabilities to be strictly lower than within-cluster link probabilities to conform to the community structure typically seen in social networks. IDM only models a single between-cluster link probability, which can be interpreted as a background noise probability. These probabilistic models are compared against three other approaches for node clustering, namely Infomap, Louvain modularity, and hierarchical clustering. Using 3 different datasets comprising healthy volunteers' rs-fMRI we found that the BCD model was in general the most predictive and reproducible model. This suggests that rs-fMRI data exhibits community structure and furthermore points to the significance of modeling heterogeneous between-cluster link probabilities.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 100, 15 October 2014, Pages 301-315
نویسندگان
, , , , , ,