کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6027334 1580915 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Part-based motor neuron recognition in the Drosophila ventral nerve cord
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
Part-based motor neuron recognition in the Drosophila ventral nerve cord
چکیده انگلیسی
We exploit the morphological stereotypy and relative simplicity of the Drosophila nervous system to model the diverse neuronal morphologies of individual motor neurons and understand underlying principles of synaptic connectivity in a motor circuit. In our analysis, we use images depicting single neurons labeled with green fluorescent protein (GFP) and serially imaged with laser scanning confocal microscopy. We model morphology with a novel formulation of Conditional Random Fields, a hierarchical latent-state CRF, to capture the highly varying compartment-based structure of the neurons (soma-axon-dendrites). In the training phase, we follow two approaches: (i) hierarchical learning, where compartment labels are given, and (ii) latent-state learning, where compartment labels are not given in the samples. We demonstrate the accuracy of our approach using wild-type motor neurons in the larval ventral nerve cord. However, our method can also be used for the identification of motor neuron mutations, as well as the automated annotation of the motor circuitry in wild type and mutant animals. Our method is directly applicable to the recognition of compartment-defined structures.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 90, 15 April 2014, Pages 33-42
نویسندگان
, , , , , ,