کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6027611 | 1580913 | 2014 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Brain extraction based on locally linear representation-based classification
ترجمه فارسی عنوان
استخراج مغز بر اساس طبقه بندی مبتنی بر نمایندگی خطی محلی است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
استخراج مغز، طبقه بندی مبتنی بر نمایندگی خطی محلی، فیوژن برچسب، بستن لنگر محلی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب شناختی
چکیده انگلیسی
Brain extraction is an important procedure in brain image analysis. Although numerous brain extraction methods have been presented, enhancing brain extraction methods remains challenging because brain MRI images exhibit complex characteristics, such as anatomical variability and intensity differences across different sequences and scanners. To address this problem, we present a Locally Linear Representation-based Classification (LLRC) method for brain extraction. A novel classification framework is derived by introducing the locally linear representation to the classical classification model. Under this classification framework, a common label fusion approach can be considered as a special case and thoroughly interpreted. Locality is important to calculate fusion weights for LLRC; this factor is also considered to determine that Local Anchor Embedding is more applicable in solving locally linear coefficients compared with other linear representation approaches. Moreover, LLRC supplies a way to learn the optimal classification scores of the training samples in the dictionary to obtain accurate classification. The International Consortium for Brain Mapping and the Alzheimer's Disease Neuroimaging Initiative databases were used to build a training dataset containing 70 scans. To evaluate the proposed method, we used four publicly available datasets (IBSR1, IBSR2, LPBA40, and ADNI3T, with a total of 241 scans). Experimental results demonstrate that the proposed method outperforms the four common brain extraction methods (BET, BSE, GCUT, and ROBEX), and is comparable to the performance of BEaST, while being more accurate on some datasets compared with BEaST.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 92, 15 May 2014, Pages 322-339
Journal: NeuroImage - Volume 92, 15 May 2014, Pages 322-339
نویسندگان
Meiyan Huang, Wei Yang, Jun Jiang, Yao Wu, Yu Zhang, Wufan Chen, Qianjin Feng, for the Alzheimer's Disease Neuroimaging Initiative for the Alzheimer's Disease Neuroimaging Initiative,