کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6028215 1580921 2013 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Robust estimation of fractal measures for characterizing the structural complexity of the human brain: Optimization and reproducibility
ترجمه فارسی عنوان
برآورد پایدار اقدامات فراکتال برای توصیف پیچیدگی ساختاری مغز انسان: بهینه سازی و تکرارپذیری
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
چکیده انگلیسی


- The study quantifies the reliability of fractal measures within the human brain.
- Parameter settings that ensure high reproducibility are identified.
- All results provided were validated in two separate subject cohorts.
- Estimates of fractal dimension can be derived with high intra-class correlation.
- We found robust and reproducible regional differences in fractal dimension.

High-resolution isotropic three-dimensional reconstructions of human brain gray and white matter structures can be characterized to quantify aspects of their shape, volume and topological complexity. In particular, methods based on fractal analysis have been applied in neuroimaging studies to quantify the structural complexity of the brain in both healthy and impaired conditions. The usefulness of such measures for characterizing individual differences in brain structure critically depends on their within-subject reproducibility in order to allow the robust detection of between-subject differences. This study analyzes key analytic parameters of three fractal-based methods that rely on the box-counting algorithm with the aim to maximize within-subject reproducibility of the fractal characterizations of different brain objects, including the pial surface, the cortical ribbon volume, the white matter volume and the gray matter/white matter boundary. Two separate datasets originating from different imaging centers were analyzed, comprising 50 subjects with three and 24 subjects with four successive scanning sessions per subject, respectively. The reproducibility of fractal measures was statistically assessed by computing their intra-class correlations. Results reveal differences between different fractal estimators and allow the identification of several parameters that are critical for high reproducibility. Highest reproducibility with intra-class correlations in the range of 0.9-0.95 is achieved with the correlation dimension. Further analyses of the fractal dimensions of parcellated cortical and subcortical gray matter regions suggest robustly estimated and region-specific patterns of individual variability. These results are valuable for defining appropriate parameter configurations when studying changes in fractal descriptors of human brain structure, for instance in studies of neurological diseases that do not allow repeated measurements or for disease-course longitudinal studies.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 83, December 2013, Pages 646-657
نویسندگان
, , , , , , , , , , , , ,