کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6028308 | 1580921 | 2013 | 13 صفحه PDF | دانلود رایگان |

- R2* and frequency difference mapping (FDM) are sensitive to fiber orientation.
- We show that R2* and FDM data can be used to produce fiber orientation maps (FOM).
- We tested this approach on small tissue samples.
- Good agreement was observed between the gradient echo- and DTI-based FOM.
Fiber orientation mapping through diffusion tensor imaging (DTI) is a powerful MRI-based technique for visualising white matter (WM) microstructure in the brain. Although DTI provides a robust way to measure fiber orientation, it has some limitations linked to the use of EPI read-outs and long diffusion encoding periods, including relatively low spatial resolution. Development of alternative MRI-based methods for fiber orientation mapping is therefore valuable, in part to allow validation of DTI results. In this study, we used the orientation dependence of R2* (1/T2*) and frequency difference measurements to generate three dimensional maps of the fiber orientation in WM from multi-echo gradient-echo (GE) images acquired from post mortem brain tissue samples oriented at multiple angles to B0. Through analytical derivation and numerical simulation, the relationships connecting variations in R2* and frequency difference values to the angle between the underlying WM fiber orientation and the direction of B0 were characterised. High resolution 3D fiber orientation maps (FOM) were then formed by comparing R2* and frequency difference data, acquired with the sample at multiple orientations to the field, to generalised models based on the derived expressions for the angular dependence of each parameter. By comparing the resulting GE-based FOM with DTI-based FOM from the same tissue sample, we demonstrate that fiber orientation mapping based on gradient echo MRI has the potential to become an important tool for investigating microstructure in brain tissue.
Journal: NeuroImage - Volume 83, December 2013, Pages 1011-1023