کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6028847 1188705 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Similar scaling of contralateral and ipsilateral cortical responses during graded unimanual force generation
ترجمه فارسی عنوان
مقیاس مشابه مقابله با پاسخ های قشر جانبی و ثانویه در زمان تولید نسبی نیروی غیرمعمول
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
چکیده انگلیسی

Hemibody movements are strongly considered as being under the control of the contralateral hemisphere of the cerebral cortex. However, some neuroimaging studies have found a bilateral activation of either the primary sensori-motor (SM1) areas or the rostral prefrontal cortex (PFC), during unimanual tasks. More than just bilateral, the activation of these areas was found to be symmetrical in some studies. However, the symmetrical response remains strongly controversial notably for handgrip force generations. We therefore aimed to examine the bilateral SM1 and rostral PFC area activations in response to graded submaximal force generation during a unilateral handgrip task. Fifteen healthy subjects performed 6 levels of force (ranging from 5 to 50% of MVC) during a handgrip task. We concomitantly measured the activation of bilateral SM1 and rostral PFC areas through near-infrared spectroscopy (NIRS) and the electromyographic (EMG) activity of the bilateral flexor digitorum superficialis (FDS) muscles. Symmetrical activation was found over the SM1 areas for all the investigated levels of force. At the highest level of force (i.e., 50% of MVC), the EMG of the passive FDS increased significantly and the ipsilateral rostral PFC activation was found more intense than the corresponding contralateral rostral PFC activation. We suggest that the visuo-guided control of force levels during a handgrip task requires the cross-talk from ipsi- to contralateral SM1 to cope for the relative complexity of the task, similar to that which occurs during complex sequential finger movement. We also propose alternative explanations for the observed symmetrical SM1 activation including (i) the ipsilateral corticospinal tract and (ii) interhemispheric inhibition (IHI) mechanism. The increase in EMG activity over the passive FDS could be associated with a release of IHI at 50% of MVC. Finally, our results suggest that the greater ipsilateral (right) rostral PFC activation may reflect the greater demand of attention required to control the motor output at high levels of force.

► We measured bilateral SM1 and PFC activity by NIRS during unimanual force generation. ► We found a symmetrical activation of these areas for several levels of force. ► NIRS signals allowed discussion on both inhibitory and excitatory mechanisms. ► Divergent neural mechanisms may underlie ispi- and contralateral activations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 85, Part 1, 15 January 2014, Pages 471-477
نویسندگان
, , , , , ,