کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6030179 1580936 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Catechol-O-methyltransferase (COMT) influences the connectivity of the prefrontal cortex at rest
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
Catechol-O-methyltransferase (COMT) influences the connectivity of the prefrontal cortex at rest
چکیده انگلیسی

Catechol-O-methyltransferase (COMT) modulates dopamine in the prefrontal cortex (PFC) and influences PFC dopamine-dependent cognitive task performance. A human COMT polymorphism (Val158Met) alters enzyme activity and is associated with both the activation and functional connectivity of the PFC during task performance, particularly working memory. Here, we used functional magnetic resonance imaging and a data-driven, independent components analysis (ICA) approach to compare resting state functional connectivity within the executive control network (ECN) between young, male COMT Val158 (n = 27) and Met158 (n = 28) homozygotes. COMT genotype effects on grey matter were assessed using voxel-based morphometry. COMT genotype significantly modulated functional connectivity within the ECN, which included the head of the caudate, and anterior cingulate and frontal cortical regions. Val158 homozygotes showed greater functional connectivity between a cluster within the left ventrolateral PFC and the rest of the ECN (using a threshold of Z > 2.3 and a family-wise error cluster significance level of p < 0.05). This difference occurred in the absence of any alterations in grey matter. Our data show that COMT Val158Met affects the functional connectivity of the PFC at rest, complementing its prominent role in the activation and functional connectivity of this region during cognitive task performance. The results suggest that genotype-related differences in prefrontal dopaminergic tone result in neuroadaptive changes in basal functional connectivity, potentially including subtle COMT genotype-dependent differences in the relative coupling of task-positive and task-negative regions, which could in turn contribute to its effects on brain activation, connectivity, and behaviour.

► We studied the impact of COMT Val158Met genotype on resting state connectivity. ► We compared resting state functional connectivity in Val/Val vs. Met/Met men. ► We focussed on the predominantly prefrontal (PFC) executive control network (ECN). ► The ECN was identified using a group ICA approach. ► We found greater resting PFC functional connectivity in Val/Val vs. Met/Met men.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 68, March 2013, Pages 49-54
نویسندگان
, , , ,