کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6033803 1188749 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The impact of physiological noise correction on fMRI at 7 T
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
The impact of physiological noise correction on fMRI at 7 T
چکیده انگلیسی

Cognitive neuroimaging studies typically require fast whole brain image acquisition with maximal sensitivity to small BOLD signal changes. To increase the sensitivity, higher field strengths are often employed, since they provide an increased image signal-to-noise ratio (SNR). However, as image SNR increases, the relative contribution of physiological noise to the total time series noise will be greater compared to that from thermal noise. At 7 T, we studied how the physiological noise contribution can be best reduced for EPI time series acquired at three different spatial resolutions (1.1 mm × 1.1 mm × 1.8 mm, 2 mm × 2 mm × 2 mm and 3 mm × 3 mm × 3 mm). Applying optimal physiological noise correction methods improved temporal SNR (tSNR) and increased the numbers of significantly activated voxels in fMRI visual activation studies for all sets of acquisition parameters. The most dramatic results were achieved for the lowest spatial resolution, an acquisition parameter combination commonly used in cognitive neuroimaging which requires high functional sensitivity and temporal resolution (i.e. 3 mm isotropic resolution and whole brain image repetition time of 2 s). For this data, physiological noise models based on cardio-respiratory information improved tSNR by approximately 25% in the visual cortex and 35% sub-cortically. When the time series were additionally corrected for the residual effects of head motion after retrospective realignment, the tSNR was increased by around 58% in the visual cortex and 71% sub-cortically, exceeding tSNR ~ 140. In conclusion, optimal physiological noise correction at 7 T increases tSNR significantly, resulting in the highest tSNR per unit time published so far. This tSNR improvement translates into a significant increase in BOLD sensitivity, facilitating the study of even subtle BOLD responses.

► Impact of physiological noise correction on tSNR versus SNR was characterized at 7 T. ► tSNR was improved by 50 to 70% using physiological noise correction in task-free EPI. ► The reported results exceed values for tSNR per unit time published so far. ► tSNR improvements translated into more than 10% increase in BOLD activity in fMRI.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 57, Issue 1, 1 July 2011, Pages 101-112
نویسندگان
, , , , , , , ,