کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6034077 1188751 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution
چکیده انگلیسی
Functional magnetic resonance imaging (fMRI) is increasingly used to study functional connectivity in large-scale brain networks that support cognitive and perceptual processes. We face serious conceptual, statistical and data analysis challenges when addressing the combinatorial explosion of possible interactions within high-dimensional fMRI data. Moreover, we need to know, and account for, the physiological mechanisms underlying our signals. We argue here that (i) model selection procedures for connectivity should include consideration of more than just a few brain structures, (ii) temporal precedence - and causality concepts based on it - are essential in dynamic models of connectivity and (iii) undoing the effect of hemodynamics on fMRI data (by deconvolution) can be an important tool. However, it is crucially dependent upon assumptions that need to be verified.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 58, Issue 2, 15 September 2011, Pages 296-302
نویسندگان
, , ,