کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6035867 1188772 2011 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A data-driven framework for neural field modeling
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
A data-driven framework for neural field modeling
چکیده انگلیسی

This paper presents a framework for creating neural field models from electrophysiological data. The Wilson and Cowan or Amari style neural field equations are used to form a parametric model, where the parameters are estimated from data. To illustrate the estimation framework, data is generated using the neural field equations incorporating modeled sensors enabling a comparison between the estimated and true parameters. To facilitate state and parameter estimation, we introduce a method to reduce the continuum neural field model using a basis function decomposition to form a finite-dimensional state-space model. Spatial frequency analysis methods are introduced that systematically specify the basis function configuration required to capture the dominant characteristics of the neural field. The estimation procedure consists of a two-stage iterative algorithm incorporating the unscented Rauch-Tung-Striebel smoother for state estimation and a least squares algorithm for parameter estimation. The results show that it is theoretically possible to reconstruct the neural field and estimate intracortical connectivity structure and synaptic dynamics with the proposed framework.

Research highlights►We derive a model-based, data-driven estimator of continuum neural field parameters. ►Systematic field decomposition enables a finite-dimensional state-space model. ►We show how to infer intracortical connectivity and synaptic dynamics from data. ►Our framework provides a new link between theoretical and experimental neuroscience.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 56, Issue 3, 1 June 2011, Pages 1043-1058
نویسندگان
, , , , , ,