کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6036821 1188780 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Unsupervised spatiotemporal fMRI data analysis using support vector machines
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
Unsupervised spatiotemporal fMRI data analysis using support vector machines
چکیده انگلیسی
In this work we present a new support vector machine (SVM)-based method for fMRI data analysis. SVM has been shown to be a powerful, efficient data-driven tool in pattern recognition, and has been applied to the supervised classification of brain cognitive states in fMRI experiments. We examine the unsupervised mapping of activated brain regions using SVM. Specifically, the mapping process is formulated as an outlier detection problem of one-class SVM (OCSVM) that provides initial mapping results. These results are further refined by applying prototype selection and SVM reclassification. Multiple spatial and temporal features are extracted and selected to facilitate SVM learning. The proposed method was compared with correlation analysis (CA), t-test (TT), and spatial independent component analysis (SICA) methods using synthetic and experimental data. Our results show that the proposed method can provide more accurate and robust activation mapping than CA, TT and SICA, and is computationally more efficient than SICA. Besides its applicability to typical fMRI experiments, the proposed method is also a powerful tool in fMRI studies where a reliable quantification of activated brain regions is required.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 47, Issue 1, 1 August 2009, Pages 204-212
نویسندگان
, ,