کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6037729 | 1188789 | 2010 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Addiction related alteration in resting-state brain connectivity
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
It is widely accepted that addictive drug use is related to abnormal functional organization in the user's brain. The present study aimed to identify this type of abnormality within the brain networks implicated in addiction by resting-state functional connectivity measured with functional magnetic resonance imaging (fMRI). With fMRI data acquired during resting state from 14 chronic heroin users (12 of whom were being treated with methadone) and 13 non-addicted controls, we investigated the addiction related alteration in functional connectivity between the regions in the circuits implicated in addiction with seed-based correlation analysis. Compared with controls, chronic heroin users showed increased functional connectivity between nucleus accumbens and ventral/rostral anterior cingulate cortex (ACC), between nucleus accumbens and orbital frontal cortex (OFC), and between amygdala and OFC and reduced functional connectivity between prefrontal cortex and OFC and between prefrontal cortex and ACC. These observations of altered resting-state functional connectivity suggested abnormal functional organization in the addicted brain and may provide additional evidence supporting the theory of addiction that emphasizes enhanced salience value of a drug and its related cues but weakened cognitive control in the addictive state.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 49, Issue 1, 1 January 2010, Pages 738-744
Journal: NeuroImage - Volume 49, Issue 1, 1 January 2010, Pages 738-744
نویسندگان
Ning Ma, Ying Liu, Nan Li, Chang-Xin Wang, Hao Zhang, Xiao-Feng Jiang, Hu-Sheng Xu, Xian-Ming Fu, Xiaoping Hu, Da-Ren Zhang,