کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6039056 1188812 2008 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analyzing information flow in brain networks with nonparametric Granger causality
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
Analyzing information flow in brain networks with nonparametric Granger causality
چکیده انگلیسی
Multielectrode neurophysiological recording and high-resolution neuroimaging generate multivariate data that are the basis for understanding the patterns of neural interactions. How to extract directions of information flow in brain networks from these data remains a key challenge. Research over the last few years has identified Granger causality as a statistically principled technique to furnish this capability. The estimation of Granger causality currently requires autoregressive modeling of neural data. Here, we propose a nonparametric approach based on widely used Fourier and wavelet transforms to estimate both pairwise and conditional measures of Granger causality, eliminating the need of explicit autoregressive data modeling. We demonstrate the effectiveness of this approach by applying it to synthetic data generated by network models with known connectivity and to local field potentials recorded from monkeys performing a sensorimotor task.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 41, Issue 2, June 2008, Pages 354-362
نویسندگان
, , ,