کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6039934 1188832 2007 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dynamic causal modelling of evoked responses: The role of intrinsic connections
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
Dynamic causal modelling of evoked responses: The role of intrinsic connections
چکیده انگلیسی
Dynamic causal modelling is an approach to characterising evoked responses as measured by magneto/electroencephalography (M/EEG). A dynamic causal model (DCM) is a spatiotemporal, generative network model for event-related fields/responses (ERP/ERF) data. Using Bayesian model inversion, one can compute the posterior distributions of the DCM's physiological parameters and its marginal likelihood for model comparison. Model comparison can be used to test mechanistic hypotheses about how electrophysiological data were generated. In this work, we look at the relative importance of changes in intrinsic (within source) and extrinsic (between sources) connections in generating mismatch responses. In short, we introduce the modulation of intrinsic connectivity to the DCM framework. This is useful for testing hypotheses about adaptation of neuronal responses to local influences, in relation to influences that are mediated by long-range extrinsic connections (forward, backward, and lateral) from other sources. We illustrate this extension using synthetic data and empirical data from an oddball ERP experiment.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 36, Issue 2, June 2007, Pages 332-345
نویسندگان
, , ,