کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6040164 | 1188835 | 2007 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Automatic relevance determination based hierarchical Bayesian MEG inversion in practice
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In recent simulation studies, a hierarchical Variational Bayesian (VB) method, which can be seen as a generalisation of the traditional minimum-norm estimate (MNE), was introduced for reconstructing distributed MEG sources. Here, we studied how nonlinearities in the estimation process and hyperparameter selection affect the inverse solutions, the feasibility of a full Bayesian treatment of the hyperparameters, and multimodality of the true posterior, in an empirical dataset wherein a male subject was presented with pure tone and checkerboard reversal stimuli, alone and in combination. An MRI-based cortical surface model was employed. Our results show, with a comparison to the basic MNE, that the hierarchical VB approach yields robust and physiologically plausible estimates of distributed sources underlying MEG measurements, in a rather automated fashion.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 37, Issue 3, 1 September 2007, Pages 876-889
Journal: NeuroImage - Volume 37, Issue 3, 1 September 2007, Pages 876-889
نویسندگان
Aapo Nummenmaa, Toni Auranen, Matti S. Hämäläinen, Iiro P. Jääskeläinen, Mikko Sams, Aki Vehtari, Jouko Lampinen,