کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6040164 1188835 2007 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Automatic relevance determination based hierarchical Bayesian MEG inversion in practice
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
Automatic relevance determination based hierarchical Bayesian MEG inversion in practice
چکیده انگلیسی
In recent simulation studies, a hierarchical Variational Bayesian (VB) method, which can be seen as a generalisation of the traditional minimum-norm estimate (MNE), was introduced for reconstructing distributed MEG sources. Here, we studied how nonlinearities in the estimation process and hyperparameter selection affect the inverse solutions, the feasibility of a full Bayesian treatment of the hyperparameters, and multimodality of the true posterior, in an empirical dataset wherein a male subject was presented with pure tone and checkerboard reversal stimuli, alone and in combination. An MRI-based cortical surface model was employed. Our results show, with a comparison to the basic MNE, that the hierarchical VB approach yields robust and physiologically plausible estimates of distributed sources underlying MEG measurements, in a rather automated fashion.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 37, Issue 3, 1 September 2007, Pages 876-889
نویسندگان
, , , , , , ,