کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
609554 | 880625 | 2010 | 7 صفحه PDF | دانلود رایگان |

Oedogonium hatei was developed into an effective and efficient adsorbent for the removal of Ni(II) ions from aqueous solution. The adsorption studies of untreated and treated algal biomass (with 0.1 M HCl) were compared in batch mode. Optimum biosorption conditions were determined as a function of pH, biomass dosage, contact time, and temperature and the Langmuir and Freundlich isotherms were found applicable in terms of relatively high regression values. The maximum monolayer adsorption capacity of the biosorbents (untreated and acid-treated algae), as obtained from the Langmuir adsorption isotherm, was found to be 40.9 and 44.2 mg/g, respectively at 80 min contact time, 5.0 pH, 0.7 g/L algal dose, and 298 K temperature. The thermodynamic parameters showed that the adsorption of Ni(II) ions onto algal biomass was feasible, spontaneous, and exothermic under the studied conditions. Kinetics of adsorption followed both first- and second-order rate equations and the process involving the rate-controlling step is complex involving boundary layer as well as intraparticle diffusion processes. The FTIR results of algal biomass showed that biomass has different functional groups and these functional groups are able to react with metal ion in aqueous solution. Biosorbent could be regenerated using 0.1 M NaOH solution, with up to 70% recovery. The performance of this biosorbent was then compared with many other reported biosorbents for nickel removal and it was observed that the proposed adsorbent is effective in terms of its performance.
Effect of pH on the uptake of Ni(II) Cr(VI) onto untreated and acid-treated Oedogonium hatei algal biomass.Figure optionsDownload high-quality image (89 K)Download as PowerPoint slide
Journal: Journal of Colloid and Interface Science - Volume 342, Issue 2, 15 February 2010, Pages 533–539