کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
610978 880663 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the possibility of AgZSM-5 zeolite being a partial oxidation catalyst for methane
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
On the possibility of AgZSM-5 zeolite being a partial oxidation catalyst for methane
چکیده انگلیسی

A silver-ion-exchanged HZSM-5 zeolite sample (Ag(H)ZSM-5) evacuated at 573 K exhibited prominent catalytic behavior in the partial oxidation of CH4 at temperatures above 573 K, exceeding the performance of Ag/SiO2⋅Al2O3 and Ag/SiO2 catalysts. From the infrared (IR) and X-ray absorption fine structure (XAFS) spectra, as well as the dioxygen adsorption measurement, it was concluded that the simultaneous existence of Ag+ ions and small clusters of Ag particles leads to the partial oxidation of methane. Taking the magnitude of the formation enthalpy (per oxygen atom) of Ag2O (ΔH=26 kJ/molΔH=26 kJ/mol) into consideration, we propose the interpretation that the dioxygen activated on small Ag metal clusters formed in ZSM-5 elaborates a surface oxide layer on small Ag clusters and the thus-formed species is simultaneously and easily decomposed at 573 K or above, and the oxygen activated in this way on the Ag metal spills over and can react with methane that has been activated by the Ag+ ions exchanged in ZSM-5, resulting in the high catalytic activity of the Ag(H)ZSM-5 sample in the partial oxidation of methane. This interpretation is also well evidenced by XAFS and IR data. It is anticipated that this material has the potential to be a promising catalyst in the conversion of natural gas into higher value-added chemicals and fuels.

AgZSM-5 exhibited prominent catalytic behavior in the partial oxidation of CH4 to CO and H2 above 573 K and has a potential for acting as the catalyst for the conversion of abundant gases into valuable chemicals.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Colloid and Interface Science - Volume 333, Issue 1, 1 May 2009, Pages 294–299
نویسندگان
, , , , , , ,