کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
611653 | 880680 | 2008 | 7 صفحه PDF | دانلود رایگان |

Triazole formation via 1,3-dipolar cycloaddition, or “click” chemistry, is a powerful synthetic method for incorporating chemical functionality onto the surfaces of Au nanoparticles. To investigate the factors that govern azide/alkyne reactivity at particle surfaces, we measured the general kinetic trends for the uncatalyzed reaction using FTIR spectroscopy. This study examines the roles of ligand length, electronic substitution of the alkyne species, and solvent on the reaction under pseudo-first-order conditions. The conversion of azide to triazole is found to depend more strongly on the relative surface coverage of azide terminated alkanethiol than on the ligand length and solvent.
The general kinetic trends for the uncatalyzed triazole formation on Au nanoparticle surfaces were measured using FTIR spectroscopy. This study examines the roles of ligand length, electronic substitution of the alkyne species, and solvent on the reaction under pseudo-first-order conditions. The conversion of azide to triazole is found to depend more strongly on the relative surface coverage of azide terminated alkanethiol than on the ligand length and solvent.Figure optionsDownload as PowerPoint slide
Journal: Journal of Colloid and Interface Science - Volume 320, Issue 1, 1 April 2008, Pages 346–352