کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6125512 | 1220179 | 2014 | 10 صفحه PDF | دانلود رایگان |

SummaryObjectiveGlycosphingolipids (GSLs) are ubiquitous membrane components that play a functional role in maintaining chondrocyte homeostasis. We investigated the potential role of gangliosides, one of the major components of GSLs, in osteoarthritis (OA) pathogenesis.DesignBoth age-associated and instability-induced OA models were generated using GM3 synthase knockout (GM3Sâ/â) mice. A cartilage degradation model and transiently GM3S-transfected chondrocytes were analyzed to evaluate the function of gangliosides in OA development. The amount of each series of GSLs in chondrocytes after IL-1α stimulation was profiled using mass spectrometry (MS).ResultsOA changes in GM3Sâ/â mice were dramatically enhanced with aging compared to those in wild-type (WT) mice. GM3Sâ/â mice showed more severe instability-induced pathologic OA in vivo. Ganglioside deficiency also led to the induction of matrix metalloproteinase (MMP)-13 and ADAMTS-5 secretion and chondrocyte apoptosis in vitro. In contrast, transient GM3S transfection of chondrocytes suppressed MMP-13 and ADAMTS-5 expression after interleukin (IL)-1α stimulation. GSL profiling revealed the presence of abundant gangliosides in chondrocytes after IL-1α stimulation.ConclusionGangliosides play a critical role in OA pathogenesis by regulating the expression of MMP-13 and ADAMTS-5 and chondrocyte apoptosis. Based on the obtained results, we propose that gangliosides are potential target molecules for the development of novel OA treatments.
Journal: Osteoarthritis and Cartilage - Volume 22, Issue 2, February 2014, Pages 313-322