کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
612929 880710 2006 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ni/SiO2 promoted growth of carbon nanofibers from chlorobenzene: Characterization of the active metal sites
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
Ni/SiO2 promoted growth of carbon nanofibers from chlorobenzene: Characterization of the active metal sites
چکیده انگلیسی

The temporal changes to supported Ni sites during the growth of graphitic carbon nanofibers (GCNs) via the decomposition of chlorobenzene over Ni/SiO2 at 873 K have been investigated. The reaction of chlorobenzene with hydrogen also generated benzene, via catalytic hydrodechlorination, as the principal competing reaction. Reaction selectivity was found to be time dependent with a switch from a preferential hydrodechlorination to a predominant decomposition that generated an increasingly more structured carbon product over prolonged time-on-stream. These findings are discussed in terms of Cl/catalyst interaction(s) leading to metal site restructuring, the latter manifest in a sintering and faceting of the Ni metal particles. The pressure exerted on the metal/support interface due to fiber formation was of sufficient magnitude to extract the Ni particle from the support; the occurrence of an entrapped Ni particle at the fiber tip is a feature common to the majority of GCNs with the incorporation of Ni fragments along the length of the GCN. Metal site restructuring has been probed by temperature-programmed reduction of the passivated samples, H2 chemisorption/temperature-programmed desorption (TPD) and XANES/EXAFS analyses. This restructuring serves to enhance destructive chemisorption and/or facilitate carbon diffusion to generate the resultant GCN. The nature of the carbonaceous product has been characterized by a combination of TEM-EDX, SEM, XRD and temperature-programmed oxidation (TPO).

Temporal changes to supported Ni during the growth of carbon nanofibers (see figure) from a chlorobenzene feed are demonstrated via TPR, H2 chemisorption/TPD and XANES/EXAFS analyses and attributed to Cl/surface interactions.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Colloid and Interface Science - Volume 302, Issue 2, 15 October 2006, Pages 576–588
نویسندگان
, , ,