کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
613097 880714 2007 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hydration of a Na+-montmorillonite studied by thermally stimulated depolarization current
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
Hydration of a Na+-montmorillonite studied by thermally stimulated depolarization current
چکیده انگلیسی

Thermally stimulated depolarization current (TSDC) technique is a powerful tool for probing dipole re-orientational motions in condensed matter. In the case of cation-exchangeable aluminosilicates, it allows the assessment of the potential barrier related to the hopping mechanism of cations and, consequently, the measurement of its evolution when molecules, i.e. water, are adsorbed and interact with the cations embedded in the solid framework. Then, using suitable models based on thermodynamics, the analysis of TSDC signals obtained at various hydration states provides insights about the surface properties of the studied solid and the mechanism of adsorption at the cationic site. In this work, TSDC is used to study the first stage, i.e. when the number of adsorbed molecules is below the occurrence of the water monolayer, of water adsorption in a Na+-montmorillonite from Mostaganem (Algeria). It is shown that the hydration process follows two stages. Using the “chemical force” concept it can then be concluded that when the number of adsorbed water molecules per cation is lower than 2, cation–water interaction dominates the energetics of adsorption, whereas at higher water loading the water “chemical force” is also involved into water–water and/or water–clay framework interactions. The number of water molecules for the monohydrated state is found to be about 7.

The earliest hydration stages of a Na+-montmorillonite are studied using thermally stimulated current spectroscopy. Using the “chemical force” concept, it is concluded that when the number of adsorbed water molecules per cation is lower than 2, cation–water interaction dominates the energetics of adsorption, whereas at higher water loading the water “chemical force” is also involved into water–water and/or water–clay framework interactions.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Colloid and Interface Science - Volume 308, Issue 1, 1 April 2007, Pages 216–221
نویسندگان
, , , , ,