کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
615887 | 881464 | 2009 | 7 صفحه PDF | دانلود رایگان |

Machining process productivity and machined part quality improvement is a considerable challenge for modern manufacturing. One way to accomplish this is through the application of PVD coatings on cutting tools. In this study the wear rate and wear behavior of end milling cutters with mono-layered TiAlCrN and nano-multilayered self-adaptive TiAlCrN/WN PVD coatings have been studied under high performance dry ball-nose end-milling conditions. The material being machined in this case is hardened H13 tool steel. The morphology of the worn surface of the cutting tool has been studied using SEM/EDX. The microstructure of the cross-section of the chips formed during cutting was analyzed as well. The surface integrity of the workpiece material was also evaluated. Surface roughness and microhardness distribution near the surface of the workpiece material was also investigated. The data presented shows that achieving a high degree of tribological compatibility within the cutting tool/workpiece system can have a big impact on tool life and surface integrity improvement during end milling of hardened tool steel.
Journal: Tribology International - Volume 42, Issue 6, June 2009, Pages 1004–1010