کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
616330 | 881486 | 2009 | 8 صفحه PDF | دانلود رایگان |

The fretting corrosion behavior of tin coated brass contacts is studied at various current loads (1, 2 and 3 A). The typical characteristics of the change in contact resistance with fretting cycles are explained. The fretted surface is examined using scanning electron microscope, laser scanning electron microscope and energy dispersive analysis of X-rays to assess the surface morphology, extent of fretting damage, extent of oxidation, surface profile and elemental distribution across the contact zone. The degradation of contacts at high and low values of current is explained with reference to the thermal and electrical phenomena occurring at the contact interface. The results showed that irrespective of the current loads under study, the contact resistance is maintained at 1.0±0.02 Ω where the oxide debris formation and the electrical breakdown of oxide particles competed with each other maintaining the equilibrium. The number of cycles to failure of the contacts is delayed at lower current. The fretting corrosion degradation of tin coated contacts occurs much faster at higher currents as it generates more accumulation of oxide wear debris at the contact zone. The observed surface morphology and the tin profile of the fretted surface are in agreement with the experimental results.
Journal: Tribology International - Volume 42, Issue 5, May 2009, Pages 682–689