کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
616389 881489 2007 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A study on friction and wear characteristics of nanometer Al2O3 /PEEK composites under the dry sliding condition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
A study on friction and wear characteristics of nanometer Al2O3 /PEEK composites under the dry sliding condition
چکیده انگلیسی
The friction and wear properties of the polyetheretherketone (PEEK) based composites filled with 5 mass% nanometer or micron Al2O3 with or without 10 mass% polytetrafluroethylene (PTFE) against the medium carbon steel (AISI 1045 steel) ring under the dry sliding condition at Amsler wear tester were examined. A constant sliding velocity of 0.42 m s−1 and a load of 196 N were used in all experiments. The average diameter 250 μm PEEK powders, the 15 or 90 nm Al2O3 nano-particles or 500 nm Al2O3 particles and/or the PTFE fine powders of diameter 50 μm were mechanically mixed in alcohol, and then the block composite specimens were prepared by the heat compression moulding. The homogeneously dispersion of the Al2O3 nano-particles in PEEK matrix of the prepared composites was analyzed by the atomic force microscopy (AFM). The wear testing results showed that nanometer and micron Al2O3 reduced the wear coefficient of PEEK composites without PTFE effectively, but not reduced the friction coefficient. The filling of 10 mass% PTFE into pure PEEK resulted in a decrease of the friction coefficient and the wear coefficient of the filled composite simultaneously. However, when 10 mass% PTFE was filled into Al2O3/ PEEK composites, the friction coefficient was decreased and the wear coefficient increased. The worn scars on the tested composite specimen surfaces and steel ring surfaces were observed by scanning electron microscopy (SEM). A thin, uniform, and tenacious transferred film on the surface of the steel rings against the PEEK composites filled with 5 mass% 15 nm Al2O3 particles but without PTFE was formed. The components of the transferred films were detected by energy dispersive spectrometry (EDS). The results indicated that the nanometer Al2O3 as the filler, together with PEEK matrix, transferred to the counterpart ring surface during the sliding friction and wear. Therefore, the ability of Al2O3 to improve the wear resistant behaviors is closely related to the ability to improve the characteristics of the transfer film.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Tribology International - Volume 40, Issue 1, January 2007, Pages 105-110
نویسندگان
, , , , ,