کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6196619 1602590 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Negative regulation of TGFβ-induced lens epithelial to mesenchymal transition (EMT) by RTK antagonists
موضوعات مرتبط
علوم زیستی و بیوفناوری ایمنی شناسی و میکروب شناسی ایمونولوژی و میکروب شناسی (عمومی)
پیش نمایش صفحه اول مقاله
Negative regulation of TGFβ-induced lens epithelial to mesenchymal transition (EMT) by RTK antagonists
چکیده انگلیسی


- Spreds are normally expressed in the lens, similar to Sprouty and Sef.
- Overexpression of either Sprouty, Sef and Spred in lens epithelial cells can suppress TGFβ-induced EMT.
- Spreds are most effective at blocking TGFβ-induced EMT in this in vitro system.

An eclectic range of ocular growth factors with differing actions are present within the aqueous and vitreous humors that bathe the lens. Growth factors that exert their actions via receptor tyrosine kinases (RTKs), such as FGF, play a normal regulatory role in lens; whereas other factors, such as TGFβ, can lead to an epithelial to mesenchymal transition (EMT) that underlies several forms of cataract. The respective downstream intracellular signaling pathways of these factors are in turn tightly regulated. One level of negative regulation is thought to be through RTK-antagonists, namely, Sprouty (Spry), Sef and Spred that are all expressed in the lens. In this study, we tested these different negative regulators and compared their ability to block TGFβ-induced EMT in rat lens epithelial cells. Spred expression within the rodent eye was confirmed using RT-PCR, western blotting and immunofluorescence. Rat lens epithelial explants were used to examine the morphological changes associated with TGFβ-induced EMT over 3 days of culture, as well as α-smooth muscle actin (α-sma) immunolabeling. Cells in lens epithelial explants were transfected with either a reporter (EGFP) vector (pLXSG), or with plasmids also coding for different RTK-antagonists (i.e. pLSXG-Spry1, pLSXG-Spry2, pLXSG-Sef, pLSXG-Spred1, pLSXG-Spred2, pLSXG-Spred3), before treating with TGFβ for up to 3 days. The percentages of transfected cells that underwent TGFβ-induced morphological changes consistent with an EMT were determined using cell counts and validated with a paired two-tailed t-test. Explants transfected with pLXSG demonstrated a distinct transition in cell morphology after TGFβ treatment, with ∼60% of the cells undergoing fibrotic-like cell elongation. This percentage was significantly reduced in cells overexpressing the different antagonists, indicative of a block in lens EMT. Of the antagonists tested under these in vitro conditions, Spred1 was the most potent demonstrating the greatest block in TGFβ-induced fibrotic cell elongation/EMT. Through the overexpression of RTK-antagonists in lens epithelial cells we have established a novel role for Spry, Spred and Sef as negative regulators of TGFβ-induced EMT. Further investigations may help us develop a better understanding of the molecular mechanisms involved in maintaining the integrity of the normal lens epithelium, with these antagonists serving as putative therapeutic agents for prevention of EMT, and hence cataractogenesis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Experimental Eye Research - Volume 132, March 2015, Pages 9-16
نویسندگان
, , , , , ,