کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6197437 1261158 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Changes in Musashi-1 subcellular localization correlate with cell cycle exit during postnatal retinal development
موضوعات مرتبط
علوم زیستی و بیوفناوری ایمنی شناسی و میکروب شناسی ایمونولوژی و میکروب شناسی (عمومی)
پیش نمایش صفحه اول مقاله
Changes in Musashi-1 subcellular localization correlate with cell cycle exit during postnatal retinal development
چکیده انگلیسی

RNA-binding proteins, and in particular, the Musashi genes, function as essential regulators of progenitor functioning in both the developing and adult organism. In this report, we characterize the differential subcellular distribution of Musashi-1 in cells engaged in either proliferating or differentiating contexts in the developing mouse retina, and in cultured Müller glia. During retinal cell differentiation, Musashi-1 immunoreactivity shifts from exclusively cytoplasmic in retinal progenitor cells, to predominantly nuclear localization in differentiating neurons. This nuclear shift is transient, with localization in the adult retina becoming predominantly perinuclear and cytoplasmic in Müller glia and photoreceptors. A correlation between cell cycle progression and subcellular distribution of Musashi-1 is observed in passageable, adult Müller glial cells in vitro. Furthermore, treatment of Müller cultures with neuron-promoting differentiation media induces asymmetric cytoplasmic Musashi-1 immunoreactivity in dividing daughter cells. The observed shifts in subcellular Musashi-1 localization are consistent with contrasting roles for Musashi-1 during cell proliferation and differentiation. These data provide evidence that nuclear, and cytoplasmic sequestering of Musashi-1 in retinal cells is context-specific, and may contribute to downstream functioning of Musashi-1.


► Musashi-1 shifts from cytoplasmic to nuclear localization following cell cycle exit.
► Müller glia contain cytoplasmic Musashi-1 during mitosis, and nuclear during cytokinesis.
► EPO and BDNF treatment induces Musashi-1 asymmetry in dividing daughter cells.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Experimental Eye Research - Volume 92, Issue 5, May 2011, Pages 344–352