کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6203349 | 1603192 | 2014 | 12 صفحه PDF | دانلود رایگان |
- Choroidal gene expression was similar under 3 different myopiagenic “GO” conditions.
- At the level of the choroid, there appears to be a common “GO” signal.
- The choroid plays an active role in transmitting emmetropization-related signals.
We examined gene expression in tree shrew choroid in response to three different myopiagenic conditions: minus lens (ML) wear, form deprivation (FD), and continuous darkness (DK). Four groups of tree shrews (n = 7 per group) were used. Starting 24 days after normal eye opening (days of visual experience [DVE]), the ML group wore a monocular â5 D lens for 2 days. The FD group wore a monocular translucent diffuser for 2 days. The DK group experienced continuous darkness binocularly for 11 days, starting at 17 DVE. An age-matched normal group was examined at 26 DVE. Quantitative PCR was used to measure the relative (treated eye vs. control eye) differences in mRNA levels in the choroid for 77 candidate genes. Small myopic changes were observed in the treated eyes (relative to the control eyes) of the ML group (â1.0 ± 0.2 D; mean ± SEM) and FD group (â1.9 ± 0.2 D). A larger myopia developed in the DK group (â4.4 ± 1.0 D) relative to Normal eyes (both groups, mean of right and left eyes). In the ML group, 28 genes showed significant differential mRNA expression; eighteen were down-regulated. A very similar pattern occurred in the FD group; twenty-seven of the same genes were similarly regulated, along with five additional genes. Fewer expression differences in the DK group were significant compared to normal or the control eyes of the ML and FD groups, but the pattern was similar to that of the ML and FD differential expression patterns. These data suggest that, at the level of the choroid, the gene expression signatures produced by “GO” emmetropization signals are highly similar despite the different visual conditions.
Journal: Vision Research - Volume 102, September 2014, Pages 52-63