کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
621423 882554 2010 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multivariate statistical process monitoring using an improved independent component analysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی تصفیه و جداسازی
پیش نمایش صفحه اول مقاله
Multivariate statistical process monitoring using an improved independent component analysis
چکیده انگلیسی

An approach for multivariate statistical monitoring based on kernel independent component analysis (Kernel ICA) is presented. Different from the recently developed KICA which means kernel principal component analysis (KPCA) plus independent component analysis (ICA), Kernel ICA is an improvement of ICA and uses contrast functions based on canonical correlations in a reproducing kernel Hilbert space. The basic idea is to use Kernel ICA to extract independent components and later to provide enhanced monitoring of multivariate processes. I2 (the sum of the squared independent scores) and squared prediction error (SPE) are adopted as statistical quantities. Besides, kernel density estimation (KDE) is described to calculate the confidence limits. The proposed monitoring method is applied to fault detection in the simulation benchmark of the wastewater treatment process and the Tennessee Eastman process, the simulation results clearly show the advantages of Kernel ICA monitoring in comparison to ICA and KICA monitoring.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Engineering Research and Design - Volume 88, Issue 4, April 2010, Pages 403–414
نویسندگان
, ,