کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
621926 | 882592 | 2011 | 6 صفحه PDF | دانلود رایگان |

A new internally heat-integrated distillation column for quaternary separation modified from a conventional three-column system is proposed, and its performance is examined here. Two sets of heat integration between the rectifying section and the stripping section of two adjacent columns are placed in the conventional three-column system. The proposed system has been applied two example processes, the hexane and BTX processes, for the performance evaluation of energy saving and reduction of entropy production. In the hexane process, the duty reductions in reboilers and condensers are 28.5% and 30.5%, respectively, and the entropy production is reduced by 12.2% compared with the conventional system. In the BTX process, the duty reductions are 27.8% and 31.6%, respectively, and the entropy production is decreased 9.8%. The compressor utilized in the existing internally heat-integrated distillation column is not used in the proposed system leaving no difficulty of its operation and maintenance. Also, the structural similarity of the new system to the conventional system gives the column operation as easy as the conventional system.
► Internal heat integration applied to quaternary distillation for energy saving.
► No compressor necessary.
► Performance in hexane and BTX processes examined.
► Reboiler duty reductions of 28.5% and 27.8%, respectively obtained.
Journal: Chemical Engineering Research and Design - Volume 89, Issue 12, December 2011, Pages 2495–2500