کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6262380 | 1613796 | 2016 | 9 صفحه PDF | دانلود رایگان |
- Hypothermia confers neuroprotection in acute hypoxia in the neonatal mouse brain.
- Low-dose levetiracetam in combination with hypothermia had no adverse effects.
- High-dose levetiracetam increased apoptosis alone and combined with hypothermia.
- Low-dose levetiracetam had no additive neuroprotective effect after acute hypoxia.
Perinatal asphyxia to the developing brain remains a major cause of morbidity. Hypothermia is currently the only established neuroprotective treatment available for term born infants with hypoxic-ischemic encephalopathy, saving one in seven to eight infants from developing severe neurological deficits. Therefore, additional treatments with clinically applicable drugs are indispensable. This study investigates a potential additive neuroprotective effect of levetiracetam combined with hypothermia after hypoxia-induced brain injury in neonatal mice.9-day-old C57BL/6-mice (P9) were subjected either to acute hypoxia or room-air. After 90Â min of systemic hypoxia (6% O2), pups were randomized into six groups: 1) vehicle, 2) low-dose levetiracetam (LEV), 3) high-dose LEV, 4) hypothermia (HT), 5) HT combined with low-dose LEV and 6) HT combined with high-dose LEV. Pro-apoptotic factors, neuronal structures, and myelination were analysed by histology and on protein level at appropriate time points. On P28 to P37 long-term outcome was assessed by neurobehavioral testing.Hypothermia confers acute and long-term neuroprotection by reducing apoptosis and preservation of myelinating oligodendrocytes and neurons in a model of acute hypoxia in the neonatal mouse brain. Low-dose LEV caused no adverse effects after neonatal hypoxic brain damage treated with hypothermia whereas administration of high-dose LEV alone or in combination with hypothermia increased neuronal apoptosis after hypoxic brain injury. LEV in low- dosage had no additive neuroprotective effect following acute hypoxic brain injury.
Journal: Brain Research - Volume 1646, 1 September 2016, Pages 116-124