کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6263510 1613907 2013 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Research ReportThe anti-apoptotic and neuro-protective effects of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) on acute optic nerve injury is transient
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Research ReportThe anti-apoptotic and neuro-protective effects of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) on acute optic nerve injury is transient
چکیده انگلیسی


- Transplanted hUCB-MSCs repairs the acute optic nerve injury in adult rats is proposed.
- hUCB-MSCs transplantation inhibits RGCs apoptosis.
- hUCB-MSCs transplantation promotes RGCs neuroregeneration.
- hUCB-MSCs transplantation decreases P2X7R expression.

Progressive death of retinal ganglion cells (RGCs) is a major cause of irreversible visual impairment after optic nerve injury. Clinically, there are still no effective treatments for recovering the visual function at present. The probable approaches to maintain the vision and RGCs function involve in preventing RGCs from death and/or promoting the regeneration of damaged RGCs. Previous studies have shown that mesenchymal stem cells (MSCs) take neuroprotective effects on ischemia-induced cortical and spinal cord injury, however, whether MSCs have a beneficial effect on the optical nerve injury is not clearly determined. In present study, we transplanted MSCs derived from human umbilical cord blood (hUCB-MSCs) into the vitreous cavity of adult rats and investigated the probable capacity of anti-apoptosis and pro-neuroprotective effects on RGCs. RGCs were retrogradely traced by fluorescent gold particles (FG); cellular apoptosis was investigated by caspase-3 immunohistochemistry and terminal dUTP nick end labeling (TUNEL) staining. Hematoxylin-eosin (HE) staining was used to observe the morphological changes of the retina. Growth associated protein 43 (GAP-43), an established marker for axonal regeneration, was used to visualize the regenerative process over time. Expression of P2X7 receptors (P2X7R), which are responsible for inflammatory and immune responses, was also monitored in our experiments. We found that the hUCB-MSC transplantation significantly decreased cellular apoptosis and promoted the survival of RGCs in early phase. However, this protection was transient and the RGCs could not be protected from death in the end. Consistent with apoptosis detection, P2X7R was also significantly decreased in hUCB-MSC transplanted rats in the early time but without obvious difference to the rats from control group in the end. Thus, our results imply that hUCB-MSCs take anti-apoptotic, pro-neuroregenerative and anti-inflammatory effects in the early time for acute optic nerve injury in adult rats but could not prevent RGCs from death eventually.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Brain Research - Volume 1532, 26 September 2013, Pages 63-75
نویسندگان
, , ,