کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6272718 | 1614786 | 2015 | 13 صفحه PDF | دانلود رایگان |

- HIP3 and HIP7 Wistar rats model preterm and term HI injuries in human babies.
- Brain lateralization and sexual dimorphism alter HI consequences at adult age.
- Sex and hemisphere-dependent effects are observed in HIP3 and HIP7 animals.
- Greater behavioral impairments and tissue damage are observed in HIP7 animals.
Neonatal cerebral hypoxia-ischemia (HI) is a major cause of neurological disorders and the most common cause of death and permanent disability worldwide, affecting 1-2/1000 live term births and up to 60% of preterm births. The Levine-Rice is the main experimental HI model; however, critical variables such as the age of animals, sex and hemisphere damaged still receive little attention in experimental design. We here investigated the influence of sex and hemisphere injured on the functional outcomes and tissue damage following early (hypoxia-ischemia performed at postnatal day 3 (HIP3)) and late (hypoxia-ischemia performed at postnatalday 7 (HIP7)) HI injury in rats. Male and female 3- (P3) or 7-day-old (P7) Wistar rats had their right or left common carotid artery occluded and exposed to 8% O2 for 1.5Â h. Sham animals had their carotids exposed but not occluded nor submitted to the hypoxic atmosphere. Behavioral impairments were assessed in the open field arena, in the Morris water maze and in the inhibitory avoidance task; volumetric extent of tissue damage was assessed using cresyl violet staining at adult age, after completing behavioral assessment. The overall results demonstrate that: (1) HI performed at the two distinct ages cause different behavioral impairments and histological damage in adult rats (2) behavioral deficits following neonatal HIP3 and HIP7 are task-specific and dependent on sex and hemisphere injured (3) HIP7 animals presented the expected motor and cognitive deficits (4) HIP3 animals displayed discrete but significant cognitive impairments in the left hemisphere-injured females (5) HI brain injury and its consequences are determined by animal's sex and the damaged hemisphere, markedly in HIP3-injured animals.
Journal: Neuroscience - Volume 290, 2 April 2015, Pages 581-593