کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6282968 1615150 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Suppression of cytochrome P450 reductase expression promotes astrocytosis in subventricular zone of adult mice
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Suppression of cytochrome P450 reductase expression promotes astrocytosis in subventricular zone of adult mice
چکیده انگلیسی


• A mouse model with globally suppressed P450 reductase gene expression (Cpr-low).
• Markers for neurogenesis were examined in SVZ of Cpr-low mice.
• Abundance of cells positive for Ki67 or GFAP was increased in SVZ of Cpr-low mice.
• Astrocyte differentiation and growth from SVZ cells of Cpr-low mice were increased.

The aim of this study was to determine the role of NADPH-cytochrome P450 reductase (CPR) and CPR-dependent enzymes in neural stem cell (NSC) genesis in the brain. A mouse model with globally suppressed Cpr gene expression (Cpr-low mouse) was studied for this purpose. Cpr-low and wild-type (WT) mice were compared immunohistochemically for the expression of markers of cell proliferation (Ki67), immature neurons (doublecortin, DCX), oligodendrocytes (oligodendrocyte transcription factor 2, OLIG2), and astrocytes (glial fibrillary acidic protein, GFAP) in the SVZ, and for the in vitro capability of their SVZ cells to form neurospheres and differentiate into astrocytes. We found that the abundance of SVZ cells that are positive for Ki67 or GFAP expression, but not the abundance of SVZ cells that are positive for DCX and OLIG2 expression, was significantly increased in Cpr-low mice, at various ages, compared with WT mice. Furthermore, extents of astrocyte differentiation and growth, but not neurosphere formation, from SVZ cells of the Cpr-low mice were significantly increased, compared with WT mice. These results suggest that CPR and CPR-dependent enzymes play a role in suppressing astrocytosis in the SVZ of adult mice.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience Letters - Volume 548, 26 August 2013, Pages 84–89