کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6315555 | 1619162 | 2016 | 10 صفحه PDF | دانلود رایگان |

- Three POP species were measured in indoor dust from the homes of asthmatic and non-asthmatic children.
- The concentrations of BDE-47/-99/-209, PCB-8/-49 and p,p'-DDE were significantly higher in the case group.
- p,pâ²-DDE showed positive association with childhood asthma occurrence.
- Hal-POP exposure via ingestion of indoor dust was not associated with non-carcinogenic health risks.
Halogenated persistent organic pollutants (Hal-POPs) are significant contaminants in the indoor environment that are related to many human diseases. Ingestion of indoor dust is considered the major pathway of Hal-POP exposures, especially for children aged 3-6 years. Alongside a retrospective study on the associations between typical Hal-POP exposure and childhood asthma in Shanghai, indoor dust samples from asthmatic and non-asthmatic children's homes (n = 60, each) were collected. Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were measured by GC-MS. BDE-209, PCB-8 and p,pâ²-DDE were the predominant components in each chemical category. The concentrations of most Hal-POPs were significantly higher in the asthmatic families. The associations between Hal-POP exposure and asthma occurrence were examined by calculating the odds ratios (ORs) using a logistic regression model. A positive association was found between p,pâ²-DDE in indoor dust and childhood asthma (OR = 1.825, 95%CI: 1.004, 3.317; p = 0.048). The average daily doses of Hal-POP intake were calculated using the method provided by the USEPA. Non-carcinogenic health risks were preliminarily assessed. Our study indicated that exposure to p,p'-DDE via indoor dust may contribute to childhood asthma occurrence. Non-carcinogenic health risks were not found with the intake of Hal-POPs via the ingestion of indoor dust.
Journal: Environmental Pollution - Volume 211, April 2016, Pages 389-398