کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6317177 1619168 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Application of chemometric analysis and self Organizing Map-Artificial Neural Network as source receptor modeling for metal speciation in river sediment
ترجمه فارسی عنوان
کاربرد آنالیز شیمیایی و خودپنداره شبکه عصبی مصنوعی نقشه به عنوان مدل گیرنده منبع برای شکل گیری فلزات در رسوبات رودخانه
کلمات کلیدی
رودخانه گنگا، شکل گیری فلز، فرایند استخراج متوالی، تجزیه و تحلیل شیمیایی، شبکه عصبی مصنوعی نقشه خودمراقبتی،
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
چکیده انگلیسی


- Impact of river water quality on metal speciation in its sediments.
- Sequential Extraction Process was opted for metal speciation study.
- Total Acid Digestion was opted for total metal concentration assessment.
- Chemometric and Self-Organizing Map-Artificial Neural Network were applied.

Present study deals with the river Ganga water quality and its impact on metal speciation in its sediments. Concentration of physico-chemical parameters was highest in summer season followed by winter and lowest in rainy season. Metal speciation study in river sediments revealed that exchangeable, reducible and oxidizable fractions were dominant in all the studied metals (Cr, Ni, Cu, Zn, Cd, Pb) except Mn and Fe. High pollution load index (1.64-3.89) recommends urgent need of mitigation measures. Self-organizing Map-Artificial Neural Network (SOM-ANN) was applied to the data set for the prediction of major point sources of pollution in the river Ganga.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Pollution - Volume 204, September 2015, Pages 64-73
نویسندگان
, , , ,