کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
632910 1456010 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes
ترجمه فارسی عنوان
غلظت اکسیژن سطحی و حد اکسیژن نفوذ اکسیژن غشاهای انتقال پروتونها
کلمات کلیدی
غشای انتقال یون، جداسازی اکسیژن، واکنش اکسیژن سطحی، شار اکسیژن، مدل شار اکسیژن،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی تصفیه و جداسازی
چکیده انگلیسی
The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions at extreme temperatures (>800°C). This is especially true when fuels are present at the permeate surface. For both inert and reactive (fuels) operations, solid-state oxygen surface vacancies (δ) are ultimately responsible for driving the oxygen flux, JO2. In the inert case, the value of δ at either surface is a function of the local PO2 and temperature, whilst the magnitude of δ dictates both the JO2 and the inherent stability of the material. In this study values of δ are presented based on experimental measurements under inert (CO2) sweep: using a permeation flux model and local PO2 measurements, collected by means of a local gas-sampling probe in our large-scale reactor, we can determine δ directly. The ITM assessed was La0.9Ca0.1FeO3−δ (LCF); the relative resistances to JO2 were quantified using the pre-defined permeation flux model and local PO2 values. Across a temperature range from 825 °C to 1056 °C, δ was found to vary from 0.007 to 0.029 (<1%), safely within material stability limits, whilst the permeate surface exchange resistance dominates. An inert JO2 limit was identified owing to a maximum sweep surface δ, δmaxinert. The physical presence of δmaxinert is attributed to a rate limiting step shift from desorption to associative electron transfer steps on the sweep surface as PO2 is reduced. Permeate surface exchange limitations under non-reactive conditions suggest that reactive (fuel) operation is necessary to accelerate surface chemistry for future work, to reduce flux resistance and push δpast δmaxinert in a stable manner.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Membrane Science - Volume 489, 1 September 2015, Pages 248-257
نویسندگان
, , ,