کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
633109 1456020 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hydrogen separation membranes based on dense ceramic composites in the La27W5O55.5–LaCrO3 system
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی تصفیه و جداسازی
پیش نمایش صفحه اول مقاله
Hydrogen separation membranes based on dense ceramic composites in the La27W5O55.5–LaCrO3 system
چکیده انگلیسی


• H2 flux of ceramic composites of mixed ionic–electronic conductors measured.
• La27W5O55.5–LaCrO3 composites are chemically compatible and stable.
• H2 permeability found to be among state-of-the-art dense ceramic membranes.
• H2 permeability significantly higher than the individual composite components.

Some compositions of ceramic hydrogen permeable membranes are promising for integration in high temperature processes such as steam methane reforming due to their high chemical stability in large chemical gradients and CO2 containing atmospheres. In the present work, we investigate the hydrogen permeability of densely sintered ceramic composites (cercer) of two mixed ionic-electronic conductors: La27W3.5Mo1.5O55.5−δ (LWM) containing 30, 40 and 50 wt% La0.87Sr0.13CrO3−δ (LSC). Hydrogen permeation was characterized as a function of temperature, feed side hydrogen partial pressure (0.1–0.9 bar) with wet and dry sweep gas. In order to assess potentially limiting surface kinetics, measurements were also carried out after applying a catalytic Pt-coating to the feed and sweep side surfaces. The apparent hydrogen permeability, with contribution from both H2 permeation and water splitting on the sweep side, was highest for LWM70-LSC30 with both wet and dry sweep gas. The Pt-coating further enhances the apparent H2 permeability, particularly at lower temperatures. The apparent H2 permeability at 700 °C in wet 50% H2 was 1.1×10−3 mL min−1 cm−1 with wet sweep gas, which is higher than for the pure LWM material. The present work demonstrates that designing dual-phase ceramic composites of mixed ionic-electronic conductors is a promising strategy for enhancing the ambipolar conductivity and gas permeability of dense ceramic membranes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Membrane Science - Volume 479, 1 April 2015, Pages 39–45
نویسندگان
, , , , , ,