کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
633372 1456026 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Controlling shell-side crystal nucleation in a gas-liquid membrane contactor for simultaneous ammonium bicarbonate recovery and biogas upgrading
ترجمه فارسی عنوان
کنترل هسته کریستال پوسته در یک گیرنده غشای گاز مایع برای بازیابی بیکربنات آمونیوم همزمان و ارتقاء بیوگاز
کلمات کلیدی
بیوماتین، کریستالیزاسیون غشاء، جذب شیمیایی، بلور شدن،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی تصفیه و جداسازی
چکیده انگلیسی
A gas-liquid hollow fibre membrane contactor (HFMC) process has been introduced for carbon dioxide (CO2) separation from biogas where aqueous ammonia (NH3) is used to chemically enhance CO2 absorption and initiate heterogeneous nucleation of the reaction product ammonium bicarbonate at the membrane-solvent interface. Aqueous ammonia absorbents (2-7 M) were initially used in single pass for CO2 separation from a synthetic biogas where nucleation of ammonium bicarbonate crystals was observed at the perimeter of the micropores. Recirculation of the aqueous ammonia absorbent encouraged the growth of ammonium bicarbonate crystals on the shell-side of the membrane that measured several microns in diameter. However, at high aqueous NH3 concentrations (3-7 M), lumen side crystallisation occurred and obstructed gas flow through the lumen of the HFMC. The suggested mechanism for lumen-side crystallisation was absorbent breakthrough into the lumen due to pore wetting which was promoted by low absorbent surface tension at high NH3 concentration. Preferential shell-side nucleation can therefore be promoted by (1) raising surface tension of the absorbent and (2) selection of a membrane with a more regulated pore shape than the PTFE membrane used (d/L 0.065) as both actions can diminish solvent ingress into the pore. This was evidenced using 2 M NH3 absorbent where shell-side crystallisation was evidenced without the onset of lumen side crystallisation. Raising surface tension through the inclusion of salt into the chemical absorbent also promoted greater CO2 flux stability. Importantly, this study demonstrates that chemically enhanced HFMC are an attractive prospect for gas-liquid separation applications where reaction product recovery offers further economic value.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Membrane Science - Volume 473, 1 January 2015, Pages 146-156
نویسندگان
, , , , ,